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Effect of Measurement Error on Energy-Adjustment Models in Nutritional
Epidemiclogy

Victor Kipnis,' Laurence S. Freedman,! Charles C. Brown," Anne M. Hartman,2 Arthur Schatzkin,®
and Sholom Wacholder*

The use and interpretation of energy-adjustment regression models in nutritional epidemiology has been
vigorously debated recently. There has been little discussion, however, regarding the effect of dietary
measurement error on the performance of such models. Contrary to conventional assumptions invoked in the
standard treatment of the effect of measurement error in regression analysis, reporting errors in dietary studies
are usually biased, correlated with true nutrient intakes and with each other, heteroscedastic, and nonnormally
distributed. Methods developed in this paper allow for this more complex error structure and are therefore
more appropriate for dietary data. For practical illustration, these methods are applied to data from the
Women’s Health Trial Vanguard Study. The results demonstrate considerable shrinkage in the magnitude of
the estimated main exposure effect in energy-adjustment models due to attenuation of the true effect and
contamination from the effect of an adjusting covariate. In most cases, this shrinkage causes a sharply
reduced statistical power of the corresponding significance test in comparison with measurement without
error. These results emphasize the need to understand the measurement error properties of dietary instru-
ments through validation/calibration studies and, where possible,.to correct for the impact of measurement
error when applying energy-adjustment models. Am J Epidemiol 1997;146:842-55.
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There has been considerable interest and extensive
discussion recently concerning application of energy-
adjustment models in nutritional epidemiology. In
these regression models relating nutrient intake to
disease, the effect of a particular nutrient of interest is
adjusted for total energy intake or intake of other
nutrients. The interpretation and use of these models
has been vigorously debated ( 1-7); however, there has
been little discussion regarding the effect of dietary
measurement error on their performance.

Dietary measurement is subject to substantial error
that can have a profound impact on assessment of the
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effect of an exposure on disease (8-17). This has
important implications for the design of nutritional
epidemiologic studies (8, 13) and for their analysis and
interpretation (15-17). In regression analysis, covari-
ate measurement error leads to nonconsistent estima-
tors of the regression coefficients (18, 19). It has long
been appreciated in the applied literature that, ina
univariate model, measurement error tends to bias the
estimated regression coefficient toward zero (the at-
tenuation effect). It may be less well known that this
result is based on the “classical” assumption that error
is independent of the true covariate. In general, when
measurement error is correlated with the true covari-
ate, the estimated regression coefficient can also be
biased upward or have an opposite sign, as has been
demonstrated in the statistical (20) and epidemiologic
(16) literature. The effect of measurement error in
multiple regression analysis can be much more com-
plex (18, 21). Most of the published work studied this
effect under at least some of the restrictive assump-
tions which constitute the classical measurement error
model.

The application of energy-adjustment models is
more complex than the standard treatment of the im-
pact of measurement error, for several reasons. First,
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there is usually a strong positive correlation between
two covariates in the model (e.g., fat intake and total
energy intake), both of which are measured with error.
Second, errors are generally biased and may depend
on true nutrient intakes (underreporting is more pro-
nounced among those with higher nutrient intake).
This dependence usually results in negative correla-
tions between errors and true nutrient intakes. Third,
the variance of errors is commonly large relative to the
variance of true intakes, and it may be heteroscedastic.
Fourth, there is usually a strong positive correlation
between errors related to two covariates (under- and/or
overreporting of different nutrient intakes tend to oc-
cur together). Fifth, both true and reported nutrient
intakes generally have skewed nonnormal distribu-
tions.

There is a need, therefore, to consider this more
complex error structure in order to address our main
question: How does dietary measurement error affect
the results of analyses using energy-adjustment mod-
els? Below we develop methods and provide formulas
for the effect of generally structured measurement
error on multiple regression analysis. Then, in order to
illustrate the practical effect of dietary measurement
error on energy-adjustment models, we apply these
formulas to data from the Women’s Health Trial
(WHT) Vanguard Study. In particular, we demonstrate
the impact of dietary error on both estimation of the
main exposure effect and testing of its significance.
Finally, we discuss the implications of measurement
error for the design, analysis, and interpretation of
nutritional epidemiologic studies.

MODELS AND METHODS
Energy-adjustment models

We consider below three alternative energy-adjust-
ment models (5): the standard model,

E(y|F,, T) = Bos + BisF, + BT (1)
the residual model,

E(y|R,, T)) = Box + BirR, + BarT), (2)
and the energy partition model,

E(y|F,, N) = Bop + BipF, + BopN,. 3

In expressions 1-3, y denotes the disease outcome, F,
is the true long-term usual intake of the macronutrient
of interest (e.g., fat), N, is the true intake of “other”
macronutrients (e.g., nonfat), and 7, is the true total
energy intake. The subscript ¢ is used to denote frue as
opposed to reported intake. We assume that the vari-
ables F, N, and T, are measured in kilocalories per
day. The variable R, in model 2 is the true “energy-
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adjusted intake” of nutrient F,—that is, the residual
from the linear least squares approximation of F, by
T,

R =F o — T, 4)

where

UFz
Oy = E(Ft) - a]E(I‘tl o = (T_ pFlTI'

T

Throughout this paper, we use the symbols o, and p,,,
to denote the standard deviation of a random variable
u and the correlation coefficient of random variables u
and v, respectively.

For continuous variables, models 1-3 are mathemat-
ically equivalent and could be viewed as different
reparameterizations of the same model (2, 3, 5). They
lead to the same likelihood, and the regression coef-
ficients of one model can be expressed as linear com-
binations of the coefficients of any other model. In this
paper, we concentrate on estimating and testing the
substitution and addition effects of the main exposure
variable F, (5). The former is the effect of substituting
1 kcal of nutrient F, for 1 kcal of other macronutrients
(B,s in the standard model or 3, in the residual
model); the latter is the effect of adding 1 kcal of
nutrient F, to the diet without changing the intake of
other macronutrients (3, » in the partition model).

Below, we assume for simplicity that the three
energy-adjustment models represent linear regressions
of a continuous disease variable y on the correspond-
ing covariates. However, as is discussed in more detail
in the last section of this paper, our results apply, at
least qualitatively, to logistic regression when y is a
dichotomous variable.

True regression model

In the rest of this section, we consider energy-
adjustment models 1-3 in their general form of the
multiple linear regression

y=EQh,x)+e=B+ Bt Brte (5

We assume that x, is the main exposure variable, x,
is an adjusting covariate (e.g., in the standard model
x; = F,and x, = T,), and € is a disturbance term -
independent of x; and x,.

Measurement error modet

Because of measurement error, instead of the true
covariates x, and x, we observe their respective sur-
rogates z; and z,. We assume that error is nondiffer-
ential with regard to the outcome variable y; i.e., z,
and z, contribute no information about y beyond what
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is available in x, and x,. Most of the literature on the
effect of measurement error in regression analysis
utilizes an additive error model,

Zizxi_q—ei’i:lxz’ (6)

with at least some of the following conventional as-
sumptions:
{. Frrors are (conditionally) unbiased, i.e., E(e/x;,
) =0,i=12
2. Errors do not correlate with true covariates, i.e.,
Pre = Oa 17.] = ]-’ 2.
3. Errors do not correlate with each other, ie.,

Pe,e, = 0.
4. Errors are homoscedastic, i.e., Var(elx,, x)) =
ok, i=1,2

5. True and observed covariates have a joint mul-
tivariate normal distribution.

Additive representation 6, together with assump-
tions 2—4, is usually called the classical measurement
error model. The standard assessment of the effect of
measurement error is based on the classical error
model, sometimes with one or both of the remaining
assumptions (11-15, 17, 22). Cochran (20) relaxes
restriction 2, allowing error e; to be correlated with the
true corresponding covariate x;, i = 1, 2.

Rosner et al. (23), among others, consider a more
general measurement error model. Instead of making
explicit assumptions about error structure, they as-
sume that the regression of each of the true variables,
x,, on the observed covariates, z; and z,, is linear, i.e.,

X; = E(xilzl’ )t &=dot bz + boizy + &,
=12

where £, is independent of z; and z,. Following Carroll
et al. (21), we call expression 7 the linear regression

Bias of the estimated main exposure effect

As is shown in Appendix 1, the estimated main exposure effect %, is asymptotically (asy) normally distributed

with the asymptotic mean

asyE(y)) = v1 = AB; + CPs, | 9)

where
8 le'b
A= e
A1z
O-z,'zz .
and
0-13'22
C = ; - ngZ]'Zg =

faks)

Xy (pxm - p‘lzzpllzz)
2

O‘x:(pxﬂl - px;;ZszlZz)

calibration model. Although this model relaxes classi-
cal constraints 1-3, its underlying assumption about
the linearity and homoscedasticity of regression 7 re-
mains rather restrictive. In most practical cases, this
assumption is equivalent to the requirement that the
true and observed covariates be jointly normally dis-
tributed (20).

Popular metheds of measuring dietary intake, such
as food frequency questionnaires, commonly involve
errors that are biased, correlated with true values and
with each other, heteroscedastic, and nonnormally dis-
tributed (22, 24-26). As a result, none of the conven-
tional assumptions 1-5 usually holds, and both the
classical and the linear regression calibration models
do not adequately describe the more complex structure
of dietary measurement error. Below we consider the
general case of nondifferential measurement error, re-
laxing all of the conventional assumptions.

Naive regression model

Unlike the true model 5, the regression of the re-
sponse variable y on the observed covariates 7, and z,
will, in general, be nonlinear and/or heteroscedastic.
Ignoring the impact of measurement error on model
specification leads to the so called “naive” model,

Y=Yt vt vt (8)

representing the best (in the mean squared error sense)
linear approximation of the regression E(|zy, 25). Fol-
lowing Cramer (27), we call model 8 the mean square
linear regression of y on z; and z,. The least squares
theory for the mean square lincar regression, which
turns out to be somewhat different from the familiar
linear regression case, is outlined in Appendix 1.

(10)

)
i

T (11)
1 —p

4L
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exposure effect, we rewrite expression 9 as
CBo,

A)/C, and to its reversal when rg < —A/C.

Test of significance of the main exposure effect

Ignoring measurement error leads to the naive test
of significance of the main exposure effect which is
based on model 8 fitted to the reported data. As is
shown in Appendix 2, the level of the naive test
against the true null hypotbesis g; = 0 is generally
greater than the nominal level; therefore, the naive test
does not control the type I error rate. However, since
the naive and true tests are based on different data
(with and without measurement error, respectively),
this fact alone does not uniquely define the relation
between the two tests regarding their statistical power.

A convenient comparative power characteristic is
the asymptotic relative efficiency (ARE) of the naive
test with respect to the true one. The interpretation of
the ARE is as follows. If n, is the number of obser-
vations required by the naive test to obtain the same
power against the same alternative as the true fest
based on n, observations, then the ARE is asymptoti-
cally equal to the ratio n,:n,. Thus, to achieve the
same power, the sample size n, should be divided by
the ARE. Retaining the same number of observations
leads to a relative reduction in power of the naive test
when ARE < 1, or an increase in power when ARE > 1.

As is shown in Appendix 2, the ARE is a monoton-
ically decreasing function of the squared multiple cor-
relation coefficient R2 for the true model 5. When R?
tends toward 1 (an almost functional relation between
the response and covariates), the ARE approaches its
minimum value of zero. When R” tends toward 0 (a

Am J Epidemiol Vol. 148, No. 10, 1997

Here, for random variables u, v, and w, 0, and p,,., denote the standard deviation of u and the (partial)
correlation coefficient of u and v, respectively, adjusted for w.

As follows from formula 9, ¥, is a biased estimator of the true main exposure effect 8,. In contrast to the
univariate regression case, the bias is not fully multiplicative but also contains an additive component. The
multiplicative component of the bias is due to factor A, which we call the attenuation coefficient, and its additive
component is due to factor C, which we call the contamination coefficient.

As is shown in Appendix 1, for the classical measurement error model, 0 < A < 1, so that factor A always
attenuates the contribution of the true coefficient 8, just as in the univariate case. An attenuation factor close to
1 indicates minimum attenuation, whereas a factor A close to 0 leads to maximum attenuation. When a less
restrictive error structure is allowed, it is also possible to bave the contribution of B, reversed (A < 0) and/or
biased upward or deattenuated (|A| > 1), but we will ret

The contamination factor C determines how much

asyE(n) = { (A+ Crg)Bu= DB, rg= BB, B1#0,

where factor D may be calied the distortion coefficient. For a nonzero main exposure effect, overall distortion
may vary from attenuation of the true effect when —A/C=rg= (1 —A)/Cto its deattenuation when g > (1 —

ain the name of factor A as an attenuation coefficient.
the true coefficient for the adjusting covariate, B,
contributes to the bias of the estimated main exposure effect. Note that a contamination coefficient close to zero

means minimum contamination, and that contamination increases proportionally to .
To better understand the combined impact of the attenuation and contamination factors on the estimated main

B =0, (12)

very weak association), the ARE approaches its max-
imum value, given by formula A15.

Relation to earlier work

As is shown in Appendix 1, for the classical mea-
surement error model, our expression for the naive
regression coefficients reduces to the familiar results
reported by other authors (12, 14, 17, 20, 22). More-
over, despite our loose assumptions, the estimated
main exposure effect 4, has asymptotically the same
mean, given by formulas 9-11, as would be obtained
under more restrictive measurement error model 7.
Therefore, we have generalized the previously pub-
lished results to the broad-spectrum situation, in which
measurement errors may be biased, correlated with
true covariates and with each other, heteroscedastic,
and nonnormally distributed. It should be noted, how-
ever, that expression A6 for the asymptotic variance of
¥, in the general case differs from formula A7 for the
linear regression calibration model 7. The latter de-
fines a smaller value and therefore will account for
only part of the variation of 4, if the regression of the
true covariates on observed covariates is, in fact, non-
Jinear and/or heteroscedastic.

EXAMPLE
Data set

We illustrate the developed methods with data from
the WHT Vanguard Study (28). This trial was carried
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out from 1985 through 1988 in three US cities (Cin-
cinnati, Ohio; Houston, Texas; and Seattle, Washing-
ton). We use data on 86 women aged 45-69 years who
were assigned to the nonintervention group and com-
pleted food frequency questionnaires and food records
6, 12, and 24 months from entry into the study. The
average nutrient intake from 12 days of food records
(three 4-day periods over 18 months) is used as the
“true” usual intake. The nutrient intake from the Block
food frequency guestionnaire (29) at the end of the
reporting period is taken as the “reported” intake. We
consider dietary fat intake as the main exposure vari-
able of interest.

Using the subscripts r and ¢ to denote reported
intake and true intake, respectively, the measurement
error is defined as the difference between these in-
takes. For example, the error in reporting of fat intake
is given by ep = F, — F,. Table 1 shows descriptive
statistics for the true and reported fat, nonfat, and total
energy intakes and the corresponding measurement
errors. The correlations shown in tables 2-4 demon-
strate that the classical assumptions do not hold. There
are strong positive correlations among reporting errors
for fat energy (ez), nonfat energy (ey), and total en-
ergy (ep) intakes, indicating that under- and/or over-
reporting of fat, nonfat, and total energy tend to occur
together. There is a moderate negative correlation be-
tween the nonfat reporting error (ey) and the true
nonfat intake (N,) and between the total energy report-
ing error (er) and the true total energy intake (7)),
respectively. There are smaller negative correlations
between the fat reporting error (ey) and each of the
true intakes of fat, nonfat, and total energy. These
negative correlations indicate that the women in the

study tended to underreport high values for nutrient

TABLE 1. Mean values for true and reported intakes of
macronutrients and corresponding reporting errors: The
Womern's Health Trial Vanguard Study, 1985-1986

Variable Notation Mean
True fat F, 600.7 (175.3)*
True residual fatt R, 0.0 (101.4)
True nonfat N, 991.9 (201.1)
True total energy T, 1,592.6 (316.6)
Reported fat F, 588.8 (301.1)
Reported residual fatt R, 0.0 (136.6)
Reported nonfat N, 952.4 (299.4)
Reported total energy T, 1,541.2 (534.8)
Fat error ec -11.9 (262.5)
Residual fat error 8r 0.0 (117.4)
Nonfat error en —39.5 (274.6)
Total energy error er -57.3 (482.2)

* Numbers in parentheses, standard deviation.
YR, =F, —ap— adp = —-118.2, oy = 0.452.
FR, = F, — ab - oiT, ap = ~1849, & = 0.502.

TABLE 2. Correlations among true and reported covariates
and corresponding reporting errors in the partition model:
The Women's Health Trial Vanguard Study, 1985-1986

F. Ny F, N, er en
F, 10 0413 0497 0213 -0.097 —0.071
N, 1.0 0200 0454 -0.047 0237
F, 1.0 0.586 0.815 0.724
N, 1.0 0.531 0.721
er 1.0 0.613
en 1.0

TABLE 3. Correlations among true and reported covariates
and corresponding reporting errors in the standard modei:
The Women'’s Health Trial Vanguard Study, 1985-1986

F: T( Fr Tr er er
F, 10 0816 0497 0399 -0.097 —0.003
T: 1.0 0.402 0454 —0.083 —0.153
F, 1.0 0.891 0.815 0.724
T, 1.0 0.756 0.811
e ‘ 1.0 0.893
ey 1.0

TABLE 4. Correlations among irus and reported covariates
and corresponding reperting errors in the residual model:
The Women's Health Trial Vanguard Study, 1985-1986

R, T, R, T, en er
R, 10 00 0547 0050 0227 ~0.227
T, 10 -0.005 0454 —0006 —0.153
R 1.0 0.0 0.691 0.003
T, 1.0 -0.043 0811
en 1.0 ~0.044
. 1.0

intakes and/or overreport low values, particularly for
nonfat and total energy intakes. Switching to the re-
sidual method does not improve the situation. Table 4
shows a significant negative correlation between each
of the errors ey and e, and the true residual fat intake
R,.

In addition, the joint distribution of the true and
reported intakes is nonnormal (p < 0.0001 using the
Shapiro-Wilk test), which makes the linear regression
calibration mode! for measurement error rather im-
plausible, at least without appropriate transformations
of nutrient intake data to make their distribution more
symmetric. Thus, the more complex structure of di-
etary measurement error requires the use of the general
theory described in the previous section.

Scenarios

As follows from expressions 9 and A15, both the
estimated main exposure effect and the maximum
ARE of the corresponding significance test depend on
the true regression coefficients. Because the WHT
study was terminated in its pilot phase, no data on

Am J Epidemiol Vol. 146, No. 10, 1997
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disease variables exist, so the true regression parame-
ters are unknown. For this reason, to understand the
effect of measurement error on estimating and signif-
icance testing, we have constructed five hypothetical
sets of true regression coefficients for models 1-3.
Table S displays these five scenarios.

Consider for a moment the relative risk regression
model (14)

log RR(F,, N,) = By + BipF: + BN, (13)

where RR denotes the disease relative risk. In model
13, exp(B, p) represents the proportional change in risk
per unit of change in F, while controlling for N, with
the analogous interpretation for exp(B,z). Let AF, and
AN, represent the change in intakes of fat and nonfat,
respectively, from the middie of the first quartile (i.e.,
the 12.5 percentile) to the middle of the fourth quartile
(the 87.5 percentile} of their corresponding distribu-
tions. For the WHT data, AF, = 399.6 keal and AN, =
469.7 kcal. The relative risks for the corresponding
addition effects of fat and nonfat are then equal to

‘exp(AF B, p) and exp(AN, B, p), respectively. Each sce-

nario is based on the specified relative risks, RR(AF,)

-and RR(AN,), for these two addition effects, as shown

in columns 2 and 3 of table 5. The regression slopes in
model 13 are then uniquely defined as

B,r = Jog RR(AF)/AF,, By = log RR(AN)/AN,.

These coefficients, presented in columns 4 and 5 of
table 5, were adopted for partition model 3. The cor-
responding regression coefficients for standard and
residual models 1 and 2, displayed in columns 6-9 of

RESULTS
Attenuation and contamination factors

We have used formulas 10 and 11 to calculate the
attenuation and contamination factors for the esti-
mated fat effect in the three energy-adjustment models
(models 1-3) using the WHT data. The necessary
second moments of the joint distribution of the true
and reported intakes are displayed in tables 1-4. As is
shown in table 6, the attenuation and contamination
factors for the three energy-adjustment models are
quite similar. The attenuation factor is approximately
one third to two fifths, and the contamination factor is
—0.068 to —~0.011.

Effect of measurement error on estimated fat
coefficient

For the five scenarios described in the previous
section, table 7 contains the true values of the addition
(B, ) and substitution (8,5 = B,,) fat effects and the
asymptotic mean values of their estimates based on the
reported data. We also show in this table the values of
the distortion factor D, calculated according to for-
mula 12, and the maximum ARE of the naive signif-
icance test, calculated according to formula AlS.

For all five scenarios, table 7 demonstrates a sub-
stantial downward bias in the estimated substitation fat
effect (the relative bias is between —66 percent and
~59 percent) and a dramatic reduction in power (the
maximum ARE is between 0.21 and 0.31) for testing
its significance. The situation with the addition fat
effect for scenarios 1-3 is somewhat similar. The

for : . : :
ey table 5, were calculated according to the following  estimates based on the reported data are biased down-
.4 formulas (5): ward, with the relative bias between —73 percent and
’ b —61 percent, and a corresponding reduction in power
i Bis= Biz = Bir — Bop» Bas = Bor, for testing the significance of the effect. In scenario 4,
€ o the estimated addition effect has the least relative bias
F _ . ) i
od B = auPip + (1 = a)Bop, @ = = Pra,e of —32 percent. The maximum ARE of the‘ corre
he ar, sponding significance test is 1.06; i.e., the naive test
on .
m- TABLE 5. Five different scenarios and corresponding values of the true regression coefficients {per 1,000 kcal) for the three
ns gnergy-adjustment models: The Women’s Health Trial Vanguard Study, 1885-1986
re Partition Standard Residual
i- . Fat Nonfat odel del odel
d'l1 Scenario RR?‘,T SR; ‘—;m ° mode h <___T___e_*__
ra Bip Bap Pis - Bas Bir Ber
1 3.00 0.33 2.75 -2.34 5.09 —-2.34 5.09 —0.04
2 3.00 1.00 2.75 0.0 2.75 0.0 2.75 1.24
3 3.00 3.00 2.75 2.34 0.41 2.34 0.41 2.53
4 1.20 0.33 0.46 —-2.34 2.80 —-2.34 2.80 —1.08
the 5 1.20 3.00 0.46 2.34 ~1.88 2.34 -1.88 1.49
m *RR, relative risk.
on + Relative risk due to the addition of fat intake from the 12.5 percentile to the 87.5 percentile of the fat distribution (399.8 kcal), while
IT keeping nonfat intake constant.
'?t Relative risk due to the addition of nonfat intake from the 12.5 percentile to the 87.5 percentile of the nonfat distribution (469.7 keal),
on while keeping fat intake constant.
)97 AmJ Epidemiol Vol. 146, No. 10, 1897
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TABLE 6. Attenuation and contamination factors for the
estimated fat coefficient in the three energy-adjustment
models: The Women’s Health Trial Vanguard Study,
19851986

Factor Partition Standard Residual
model model model

Attenuation 0.331 0.401 0.406

Contamination —0.068 -0.011 —-0.011

can have slightly greater power to find a significant
effect than the test based on data without measurement
error. For scenario 5, the mean estimated addition
effect is close to zero and has the sign opposite that of
the true value, with almost total loss of power of the
corresponding significance test.

DISCUSSION

Although there has been much discussion about the
use and meaning of different energy-adjustment mod-
els, little consideration has been given to the practical
performance of such models in the presence of dietary
measurement error. Several questions come to mind.
First, how robust are the estimated substitution and
addition effects against realistic levels of dietary mea-
surement error? Does adjustment for total energy in-
take or for intake of other nutrients exacerbate the
degree of attenuation usually found with a univariate
model, or distort the estimate in some other way?
Second, what impact does this distortion have on the
statistical power to find a significant effect? Third,
given the more complex structure of dietary measure-
ment error, how much in error would the classical
approach have been? We used the WHT data to ex-
plore these questions.

Robustness 1o measurement error

In our example, none of the scenarios yields esti-
mated substitution and/or addition effects that appear
to be robust to measurement error. Table 6 shows
somewhat more favorable (leading to less distortion)
attenuation and contamination coefficients for the
standard and residual models than for the partition

model. However, since the overall bias also depends
on the ratio of the trne regression coefficients (expres-
sion 12), the estimated substitution effect was not
always less biased than the estimated addition effect in
our scenarios.

In dietary studies, reported intake of a nutrient is
usually more correlated with the true intake of the
same nutrient than with a different nutrient, and these
correlations are positive. Using general notations, this
can be written as

(14)

Prg, > ugy > 0,1 = L2 i # ).

It then follows from formula 10 that the atienuation
coefficient will commonly be positive. Although this
is not assured for all data sets, in our example the
attenuation coefficient is less than 1 and is much
greater in magnitude than the contamination coeffi-
cient for all three energy-adjustment models. Hence,
for a relatively small (in magnitude) ratio of the true
regression coefficients, rg, the attenuation coefficient
dominates in determining the distortion factor and
causes it to attenuate the true main exposure effect.
This can be observed for all five scenarios for the
estimated substitution effect and for scenarios 1-3 for
the estimated addition effect (table 7).

However, in comparison with the univariate model
without any adjusting covariate, the degree of overall
attenuation in these cases is not exacerbated. The
attenuation coefficient for the univariate model relat-
ing disease to crude (unadjusted) fat intake in the
WHT data is equal to 0.29, somewhat smaller {and
therefore causing more attenuation) than most values
of the distortion coefficient obtained with the energy-
adjustment models. This may seem surprising, since
the addition of the second poorly measured covariate
to the regression would intuitively be expected to
worsen the problems of estimation. Indeed, we can
show that if the measurement etrors were “classi-
cal”—i.c., uncorrelated with the true variables and
with each other— overall attenuation would get worse.
A special aspect of the dictary data, however, is the
strong positive correlation between errors in reported

TABLE 7. The true fat effect (8,), its mean estimated value (E(¥,)), the distortion factor {D), and the maximum asymiptotic relative
efficiency (maxARE) of the naive significance test for five scenarios: The Women's Health Trial Vanguard Study, 1085-1986

Addition effect (partition model)

Substitution effect (standard/residual madel)

Scenario

By E) D max 3 ) D ARE
i 2.75 1.07 0.39 0.35 5.09 2.07 0.41 0.30
2 275 0.91 0.33 0.26 2.75 1.10 0.40 0.29
3 2.75 0.75 0.27 0.17 0.41 0.14 0.34 0.21
4 0.46 0.31 0.68 1.06 2.80 1.15 0.41 0.31
5 0.46 —0.01 —-0.02 0.001 -1.88 —-0.78 0.41 0.31

Am J Epidemiol Vol. 146, No. 10, 1997
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nutrient intakes—e.g., 0.61 between errors in reported
fat and nonfat, respectively, in the WHT data (table 3).
This strong correlation is responsible for the greater
attenuation coefficient in the energy-adjustment mod-
els than in the crude model, which, for relatively smail
absolute values of ratio rg, leads to overall smaller
attenuation of the estimated main exposure effect.

The contribution of contamination from an adjusting
covariate to distortion of the main exposure effect
becomes substantial when ratio rg is comparable with,
or greater than, A/C in magnitude. Because of inequal-
ity 14, the contamination factor will usually be sub-
stantially smaller in magnitude than the attenuation
factor. Contamination, therefore, becomes noticeable
only for relatively large absolute values of ratio rg,
j.e., when an adjusting covariate has a much greater
effect on disease than the main exposure variable.
Examples are shown in scenarios 4 and 5 for the
estimated addition effect. In scenario 4, the two co-
variates have opposite effects on disease, and since C
is negative, contamination reduces the degree of over-
all attenuation of the estimated fat coefficient. In sce-
nario 5, both covariates affect disease in the same
direction. As a result, contamination seriously further
distorts the estimated fat coefficient, causing it to
become negligible in magnitude and of a different
direction than the true fat effect.

In general, we can show that the contamination
factor is a monotonically decreasing function of the
correlation between the reporting errors. For some
data sets, this correlation may be somewhat smaller
than in our example, causing C to be positive. More
often, however, we would expect a rather strong pos-
itive correlation between the errors, leading to a neg-
ative contamination factor. When the correlation be-
tween errors approaches 1, the contamination factor
tends to be closer in magnitude to the attenuation
factor. As a result, even for moderate absolute values
of ratio rg, the estimated main exposure effect can
have bias of arbitrary size and direction.

Statistical power

Shrinkage in the magnitude of the estimated regres-
sion coefficients, observed in all of our examples, is a
problem not only for proper estimation of a nutrient-
disease association but also for the power to detect a
significant nutrient effect in an epidemiologic study.
As follows from formula A13, the maximum ARE of
the naive test is a product of two factors. The first
factor is related to the ratio of the variances of the
estimated main exposure effects using true and re-
ported data, respectively. It is generally greater than 1
for dietary studies. In the WHT data, this factor is
equal to 2.34 for the partition model and 1.81 for the
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standard or residual model, The s
squared distortion coefficient, 1*
small in magnitude (causing rather substa
age of the true regression coefficient), th
ARE will be less than 1; i.e., the naive test w
be less powerful than the test based on data v
measurement error. Except for testing of the addition
effect in scenario 4, this is demonstrated in all of our
examples, where rather severe shrinkage in magnitude
of the true main exposure effect leads to approxi-
mately a threefold or greater reduction in the maxi-
mum ARE (table 7). Scenario 4 is different because,
due to considerable contamination from the adjusting
covariate, the distortion coefficient for the addition
effect there is relatively close to 1. Thus, the extra
power in this case is actually an artifact due to con-
tamination from the relatively large protective addition
effect assumed for nonfat. This artificial extra power
of the naive significance test will be observed every
time when the distortion coefficient is close to or
greater than 1 in magnitude.

Comparison with classical measurement error

Our results on the impact of measurement error on
energy-adjustment models are determined, to a sub-
stantial degree, by the specific structure of dietary data
and, in particular, strong positive correlations between
the true and reposted nutrient intakes and between the
reporting errors. Table 8 displays the attenuation and
contamination coefficients obtained in the WHT data
if we ignore these correlations and base our calcula-
tions on formulas A9 and A10 for the classical mea-
surement error model. Table 9 demonstrates the dif-
ferences among the true fat effect and its estimates
under the general and classical assumptions for the
three energy-adjustment models and five scenarios.
Note that the standard and residual models no longer
produce the same estimated substitution effect in the
“classical” case. Using definition 4 of the energy-
adjusted nutrient intake, we can show that the classical
assumptions would not hold for the residual model,
even if they were true for the standard model. Ignoring
this fact and applying classical formulas to both mod-
els leads to different estimated substitution effects.

TABLE 8. Attenuation and contamination factors for the
estimated fat coefficient in the three energy-adjustment
models under classical measurement error assumptions:
The Women’s Health Trial Vanguard Study, 19851886

Partition Standard Residual
Factor model mode! model
Attenuation 0.295 0.263 0.427
Contamination 0.097 0.339 0.0
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TABLE 9. The true fat effect (3,) and its mean estimated values under genaral (E{ #,)) and classical (E( 7,c )} measurement error
assumptions for the three energy-adjustment models In five scenarios: The Women’s Health Trial Vanguard Study, 1985-1986

Partition model

Standard model

Residual model

Scenario - -
By E(¥:) Ef¥ic) 4 Ef¥1) Ef¥sc) B4 E(¥ ) Ef¥e)

1 2.75 1.07 0.58 5.09 2.07 0.55 5.09 2.07 2.80

2 2.75 0.91 0.81 2.75 1.10 0.72 2.75 1.10 1.52

3 2.75 0.75 1.04 0.41 0.14 0.80 0.41 0.14 0.23

4 0.46 0.31 -0.09 2.80 1.15 -0.06 2.80 1.15 1.54

5 0.46 -0.01 0.36 -1.88 -~0.78 0.30 —1.88 -0.78 -1.04

It is clear from table 9 that the “classical” estimates
behave very differently from their general counterparts
based on more realistic assumptions. Sometimes they
demonstrate more severe shrinkage of the true effect
than actually takes place (scenarios 1 and 2 for the
partition and standard models). In other cases, they
mask real attenuation of the estimated effect (scenario
3 for the partition model or scenarios 1-5 for the
residual model), show a faise change of direction
(scenario 4 for the partition model and scenarios 4 and
5 for the standard model), or exaggerate the true effect
when in fact it is attenuated (scenario 3 for the stan-
dard model).

Limitations

One should note that our results are based on the
WHT data set, with its attendant particularities and
certain limitations. For instance, our data included
information on oniy 86 volunteer women; the “true”
nutrient intakes were assumed to be the averages of
data from the three 4-day food records; and the re-
ported intakes reflected one particular dietary instru-
ment, the Block food frequency questionnaire. Never-
theless, the mean values, standard deviations, and
correlations of the joint distribution of the true and
reported macronutrient intakes (tables 1-4) appear to
be rather typical of nutritional epidemiologic studies.
They reflect the major features of dietary data, such as
a substantial positive correlation between different
nutrient intakes, strong positive correlations between
the true and reported nutrient intakes and between the
reporting errors, etc. As a result, our findings should
be qualitatively rather similar to those obtained in
other data sets.

The results presented in this paper are based on
linear regression models, which are appropriate when
the disease variable is continuous. In many applica-
tions in nutritional epidemiology, the disease variable
is dichotomous (e.g., disease status), and logistic re-
gression is then the method of choice. Published re-
sults on application of the regression calibration
methed (21, 23, 30), as well as some simulations of
our own based on the presented approach, suggest that

when measurement error is moderate and/or the main
exposure effect is not too strong, logistic regression
produces results qualitatively similar to those obtained
with linear regression.

Conclusion

Dietary assessment is the foundation of a nutritional
epidemiologic study. As was demonstrated here, di-
etary measurement error can have a profound impact
on the results of a study. Contrary to a univariate
regression under classical measurement €rror assump-
tions, there do not seem to be simple rules with which
to make even qualitative staterents about the direction
and magnitude of the bias of the estimated effects in
energy-adjustment models. Inconsistencies in the con-
clusions among several nutritional studies (such as
those relating fat intake to breast cancer) may, of
course, be explained in terms of the different popula-
tions sampled or different methodologies applied; but
the controversial results could be also due, at least
partly, to differences in the magnitude and pattern of
measurement error associated with the dietary instru-
ment used. Moreover, even consistent evidence about
nutrient risk factors found in different studies could be
misleading because of bias caused by errors of a
similar structure (17).

It is therefore essential to understand the measure-
ment error properties of the instruments that are being
used. Calibration/validation studies of dietary instru-
ments can be useful for estimating the attenuation and
contamination factors for energy-adjustment models.
In practice, when estimated regression coefficients are
obtained from the analysis of an epidemiologic study,
these factors can provide information for evaluation
and comparison of different dietary instruments. In
addition, the estimated attenuation and contamination
factors can be used in an effort to correct the estimated
effects, as described, for example, by Rosner et al.
(23). Our theoretical results indicate that this type of
bias correction is robust, at least in large-enough sam-
ples, to departures from assumptions about the linear-
ity and homoscedasticity of the regression calibration
model. Correction of standard errors and confidence

Am J Epidemiol Vol. 146, No. 10, 1997
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intervals proposed by others (23, 30) should be mod-
ified, however, to accommodate expression A6 for the
variance of the estimated regression coefficients in the
more general case. Besides these efforts to understand
and cope with dietary measurement error, there is, of
course, a continuing need to improve the instruments
of dietary assessment.
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APPENDIX 1

Statistical Theory for the Muitiple Stochastic Regression with Covariates Subject to Nondifferential
Measurement Error

Consider the linear stochastic regression model

y=E(yﬂX) +e=B+Bx+e

(AD)

where y is the response variable, x = (x, ... x,)’ is the (k X 1) vector of random covariates, B=@B ...B
is the (k X 1) vector of regression slopes, B, is the intercept, and € is the random disturbance term independent
of x. Assume that the true covariates are not directly observable, and let z = (z; ... z,)’ be the (k X 1) vector
of surrogate covariates containing measurement error. Assume that error is nondifferential with respect to the
response variable, i.e.,

ke, 2) = f(yx),

(A2)

where f denotes the appropriate probability (density) function.
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General Measurement Error

Unlike the true model, A1, the regression of the response variable y on the surrogate covariates z, E(y[z), will,
in general, be nonlinear and/or heteroscedastic. Ignoring the impact of measurement error and formally following
specification Al leads to the naive model

y=1v+tv¥z+38 E8) =0 E[&]l=0, (A3)

representing the best (in the mean squared error sense) linear approximation of the regression E(y[z). Model A3
is called the mean square linear regression (27), with parameters defined by

y = Var '[z]Cov[z, y], vo = E(y) — v'Elz]. (A4)
Substituting y from Al into equation A4 and taking assumption A2 into account, we have
v=AfB, A = Var '[z]Cov[z, x], (AS)

where A is the matrix of the regression slopes in the mean square multivariate linear regression of the true
covariates on observed covariates:

x=A+Az7+v Ev]=0Ezv']=0.

In the case of two covariates, corresponding to the energy-adjustment models considered in the paper, matrix
A can be expressed as

A - ( Ax,zﬂz )‘lel'lz )

12371 )\xzzz'i'-l

where
A . O'x;zk _ o-x,-(px,-zj - Px,-zkpzjzk)
X T X% 2
T, o, (1 Pz,zk)

denotes the (partial) regression coefficient for z;, adjusted for z;, in the mean square linear regression of x; on z;
and z;, i, j, k= 1,2,j # k.

Note that the parameters vy, ¥ of the mean square linear regression, A3, are defined by the same formulas, A4,
as if the regression of y on z were linear, ie., E(¥jz) = v, + v'z. However, the least squares estimates of the
regression parameters in model A3 have different properties than in the familiar linear, homoscedastic regression.

A A

With n subjects in the sample, the least squares estimator * = (§,¥')’ satisfies the following (conditionally)
unbiased estimating equation:

3 25y — v =0,
i=1

where zF= (1 z;; ...z, i = 1, ..., n; ¥* = (v, ¥'). As a result, under certain regularity conditions,
Vn(¥* — *) converges in distribution to N(0; E~ [z*z*']E[z*8°¢*'1E™ '[z*z*']). In particular, the least squares
slopes estimator ¥ is asymptotically (asy) normally distributed with the mean

asyE[y] = vy = Var [z]Cov]z, y]

and the variance-covariance matrix

.1
asyVary] = Var"'[2]E[(z — E[z])8(z — Elz])']Var[z].

Expressing & from equations Al and A3 as

8=p'(x — Elx]) + e - vz — E[z],
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we may obtain
- 0% -1 ! ~1 1
asyVarly] = o Var '[z] + " Var '[z]W Var™'[z], (A6)

where
W = El(z — Ez){B'(x — E[x]) — v'(z — E[zD}(z — Elz])'].

Linear Regression Calibration Measurement Error Model

If the regression of the true covariates on observed covariates is linear and homoscedastic, the regression of
y on z is also linear and homoscedastic. Then, according to the standard theory, the mean of 4 is equal to y given
by the same expression as before,

Ely] = v = Var'[z]Cov[z. y],

but its asymptotic variance-covariance matrix is given by the usual least squares formula,
N |
asyVar[y] = — Var [z], (A7)

which is different from expression A6.

Classical Measurement Error Model
Under the classical assumptions, errors are additive, i.e.,
z=x+te,
where e = (e, ... ¢, and do not correlate with each other and with the true covariates,
Cov(x;, e) =0, Covie;, e) =0,i,j=1,.... ki#]
As a result, matrix A in expression A5 reduces to
A = (Var[x] + Varfe]) 'Var[x]. (A8)

Jo the case of two covariates, denote by

o d+adl

i i

the coefficient of reliability of z, as a measure of x;, and by

., a0+ al) — aoL Py,
R.= = ! ! . et : aiv j = 172’i * .’
S P R !

the (partial) coefficient of reliability of z, adjusted for z;. Then the elements of matrix A8 are

Ri;, i=ji#k

= 0y : .
Axizj‘zk pxm? Ri(l - Ri'j)’ i=ki #]'

Thus, general formulas 10 and 11 for the attenuation and contamination coefficients reduce to
A - R 12 (A9)

and

o,
C= szx,a_‘-‘ Rl(l = Ry} (A10)
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Since 0 < R,, < 1, it follows from formula A9 that
0<A<I,

so in the classical case factor A is, indeed, the attenuation coefficient. As follows from formula A10, in the
classical case the contamination coefficient has the sign of the correlation coefficient between the two true
covariates, so C > 0 when p, . > 0 and C < 0 when p, , < 0.

APPENDIX 2
Asymptotic Relative Efficiency of the Naive Test of Significance of the Main Exposure Effect

Consider linear stochastic regression model 5 fitted to data without measurement error. The asymptotic
maximum likelihood ratio test of the null hypothesis H,:8, = 0 against the two-sided alternative H:3, # 0
requires rejecting Hy if

B‘lz
3, — T T Al > /\; —@?
. asyVar(B,) o
where Xf,, _, denotes the upper alpha quantile of the central chi-square distribution with 1 degree of freedom.
The naive test based on model 8 fitted to the reported data rejects Hy if

,3’/‘12
To=——> Xii-a-
asyVar(y,)
For any fixed 3,, we have
2
Tg ~ ﬁ(—«%ﬁ—l—r) (ALD)
, aSyV&r(Bl)
and
! ’y;;‘ )
T~ xit— =<} Al2
vt 12

where x3(a) denotes the noncentral chi-square distribution with 1 degree of freedom and the noncentrality
parameter a. Since, according to formula 12, B, = O implies v, = CpB,, the noncentrality parameter of the
distribution of Ty under Hy is greater than 0 for B, # 0. Thus,

Pr(T 5> Xii-a | Ho) > @

that is, the level of the naive test is generally greater than the nominal level a.
From the standard linear regression theory for model 5,

. O
asyVar[B] = — Var™'fx],

SO
asyVar(8,) = PR Bre (A13)
naz (1 = p,.)
From formula A6 for mean square linear regression 8,
Var(y)) ot B (Al4)
? asyVar =TT
PN T ot (1= 6l
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where

= E([Bl];l + Bty — Viza — Yozl [Uz2£1 - U;;Rz.zzzoﬂz)
o2 (1 - pl ’
A4

%2
x;=x—E(x), z=2— E(z),i=1,2.
For the true test based on n, observations, let n, = n,(n,) be the number of observations required by the naive test
to achieve the same power against the same alternative B, # 0. As follows from substituting expressions Al3
and A14 in formulas A11 and A12 and taking expression 12 into account, n, satisfies the following condition:

n, o:(1-p) D' )

o (1~ g )\oet Hf
The asymptotic relative efficiency (ARE) of the naive test compared with the true one is defined by
n, 0'%1(1 - P2 / D?

212y

ARE(T;: Tg) = lim

o n;(n5 - 0-2 1 - 2 HY
om. xl( pxlxl) 1+ ?
Obviously, the ARE is a monotonically increasing function in o? or, equivalently, a monotonically decreasing
function in R, the multiple squared correlation coefficient for the true model 5. Thus, the ARE has the following
minimum and maximum values:
minARE = ARE(o? — 0/R*— 1) = 0
and
\11) )
) (1= p)
maxARE = ARE(0? — «/R? —> () = ————5— D*. (A15)
a1~ Pl
\12)
ality
C the
A13)
Al4)
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